Home / FAQ

FAQ

vi har opsummeret nogle almindelige problemer

produktion

  • Q.

    Laver du skræddersyede produkter?

    A.

    Ja. Vi giver kunderne OEM/ODM-løsninger. OEM minimum ordremængde er 10,000 stk.

  • Q.

    Hvordan pakker du produkterne?

    A.

    Vi pakker efter FN's regler, og vi kan også levere speciel emballage i henhold til kundens krav.

  • Q.

    Hvilken slags certifikat har du?

    A.

    Vi har ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Tilbyder du gratis prøver?

    A.

    Vi leverer batterier med en effekt på ikke over 10WH som gratis prøver.

  • Q.

    Hvad er din produktionskapacitet?

    A.

    120,000-150,000 stykker om dagen, hvert produkt har en forskellig produktionskapacitet, du kan diskutere detaljerede oplysninger i henhold til e-mail.

  • Q.

    Hvor lang tid tager det at producere?

    A.

    Omkring 35 dage. Det konkrete tidspunkt kan koordineres på mail.

  • Q.

    Hvor lang er din prøveproduktionstid?

    A.

    To uger (14 dage).

Andet

  • Q.

    Hvad er betalingsbetingelserne?

    A.

    Vi accepterer generelt 30% forudbetaling som depositum og 70% før levering som slutbetaling. Andre metoder kan forhandles.

  • Q.

    Hvad er leveringsbetingelserne?

    A.

    Vi leverer: FOB og CIF.

  • Q.

    Hvad er betalingsmetoden?

    A.

    Vi modtager betaling via TT.

  • Q.

    Hvilke markeder har du solgt på?

    A.

    Vi har transporteret varer til Nordeuropa, Vesteuropa, Nordamerika, Mellemøsten, Asien, Afrika og andre steder.

Teknologier

  • Q.

    Hvad er et batteri?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Hvad er forskellene mellem primære batterier og sekundære batterier?

    A.

    Den største forskel er, at det aktive materiale er anderledes. Det aktive materiale i det sekundære batteri er reversibelt, mens det aktive materiale i det primære batteri ikke er det. Det primære batteris selvafladning er meget mindre end det sekundære batteris. Alligevel er den indre modstand meget større end det sekundære batteris, så belastningskapaciteten er lavere. Derudover er den massespecifikke kapacitet og volumenspecifikke kapacitet for det primære batteri mere betydningsfuld end de tilgængelige genopladelige batterier.

  • Q.

    Hvad er det elektrokemiske princip for Ni-MH-batterier?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Hvad er det elektrokemiske princip for lithium-ion-batterier?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Hvad er de almindeligt anvendte standarder for batterier?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Hvad er hovedstrukturen af ​​Ni-MH-batteriet?

    A.

    Hovedkomponenterne i nikkel-metalhydrid-batterier er positiv elektrodeplade (nikkeloxid), negativ elektrodeplade (hydrogenlagringslegering), elektrolyt (hovedsageligt KOH), membranpapir, tætningsring, positiv elektrodehætte, batterikasse osv.

  • Q.

    Hvad er de vigtigste strukturelle komponenter i lithium-ion-batterier?

    A.

    Hovedkomponenterne i lithium-ion-batterier er øvre og nedre batteridæksler, positiv elektrodeplade (aktivt materiale er lithium-koboltoxid), separator (en speciel kompositmembran), en negativ elektrode (aktivt materiale er kul), organisk elektrolyt, batterikasse (opdelt i to slags stålskal og aluminiumsskal) og så videre.

  • Q.

    Hvad er batteriets indre modstand?

    A.

    Det refererer til den modstand, der opleves af strømmen, der flyder gennem batteriet, når batteriet fungerer. Den er sammensat af ohmsk intern modstand og polarisering intern modstand. Batteriets betydelige interne modstand vil reducere batteriafladningsarbejdsspændingen og forkorte afladningstiden. Den interne modstand påvirkes hovedsageligt af batterimaterialet, fremstillingsprocessen, batteristrukturen og andre faktorer. Det er en vigtig parameter til at måle batteriets ydeevne. Bemærk: Generelt er den interne modstand i ladet tilstand standarden. For at beregne batteriets interne modstand, bør det bruge en speciel intern modstandsmåler i stedet for et multimeter i ohm-området.

  • Q.

    Hvad er den nominelle spænding?

    A.

    Batteriets nominelle spænding refererer til den spænding, der udvises under normal drift. Den nominelle spænding af det sekundære nikkel-cadmium nikkel-hydrogen batteri er 1.2V; den nominelle spænding for det sekundære lithiumbatteri er 3.6V.

  • Q.

    Hvad er åben kredsløbsspænding?

    A.

    Åben kredsløbsspænding refererer til potentialforskellen mellem batteriets positive og negative elektroder, når batteriet ikke fungerer, det vil sige, når der ikke strømmer strøm gennem kredsløbet. Arbejdsspænding, også kendt som terminalspænding, refererer til potentialforskellen mellem batteriets positive og negative poler, når batteriet fungerer, det vil sige, når der er overstrøm i kredsløbet.

  • Q.

    Hvad er batteriets kapacitet?

    A.

    Batteriets kapacitet er opdelt i den nominelle effekt og den faktiske evne. Batteriets nominelle kapacitet refererer til bestemmelsen eller garantierne om, at batteriet skal aflade den minimale mængde elektricitet under visse afladningsforhold under design og fremstilling af stormen. IEC-standarden foreskriver, at nikkel-cadmium- og nikkel-metalhydrid-batterier oplades ved 0.1C i 16 timer og aflades ved 0.2C til 1.0V ved en temperatur på 20°C±5°C. Batteriets nominelle kapacitet er udtrykt som C5. Lithium-ion-batterier er fastsat til at oplade i 3 timer under gennemsnitstemperatur, konstant strøm (1C)-konstant spænding (4.2V) kontrollerer krævende forhold og derefter aflades ved 0.2C til 2.75V, når den afladede elektricitet er nominel kapacitet. Batteriets faktiske kapacitet refererer til den reelle strøm, der frigives af stormen under visse afladningsforhold, som hovedsageligt er påvirket af afladningshastigheden og temperaturen (så strengt taget bør batterikapaciteten specificere opladnings- og afladningsforholdene). Enheden for batterikapacitet er Ah, mAh (1Ah=1000mAh).

  • Q.

    Hvad er batteriets resterende afladningskapacitet?

    A.

    Når det genopladelige batteri aflades med en stor strøm (såsom 1C eller derover), på grund af "flaskehalseffekten", der eksisterer i den interne diffusionshastighed af den aktuelle overstrøm, har batteriet nået terminalspændingen, når kapaciteten ikke er helt afladet , og derefter bruger en lille strøm som 0.2C kan fortsætte med at fjerne, indtil 1.0V/styk (nikkel-cadmium og nikkel-brint batteri) og 3.0V/stykke (lithium batteri), den frigivne kapacitet kaldes restkapacitet.

  • Q.

    Hvad er en udledningsplatform?

    A.

    Afladningsplatformen for Ni-MH genopladelige batterier refererer normalt til det spændingsområde, hvor batteriets arbejdsspænding er relativt stabil, når det aflades under et specifikt afladningssystem. Dens værdi er relateret til afladningsstrømmen. Jo større strøm, jo ​​lavere vægt. Afladningsplatformen for lithium-ion-batterier er generelt at stoppe opladningen, når spændingen er 4.2V, og den nuværende er mindre end 0.01C ved en konstant spænding, så lad den stå i 10 minutter og aflade til 3.6V ved enhver afladningshastighed nuværende. Det er en nødvendig standard at måle kvaliteten af ​​batterier.

  • Q.

    Hvad er mærkningsmetoden for genopladelige batterier specificeret af IEC?

    A.

    I henhold til IEC-standarden består mærket af Ni-MH-batteri af 5 dele. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. For eksempel repræsenterer HF18/07/49 et firkantet nikkel-metalhydridbatteri med en bredde på 18 mm, 7 mm og en højde på 49 mm. KRMT33/62HH repræsenterer nikkel-cadmium batteri; afladningshastigheden er mellem 0.5C-3.5, enkelt batteri i højtemperatur-serien (uden forbindelsesstykke), diameter 33 mm, højde 62 mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Det første bogstav: angiver batteriets skadelige elektrodemateriale. I—repræsenterer lithium-ion med indbygget batteri; L—repræsenterer lithiummetalelektrode eller lithiumlegeringselektrode. 03) Det andet bogstav: angiver batteriets katodemateriale. C-kobolt-baseret elektrode; N-nikkel-baseret elektrode; M-mangan-baseret elektrode; V—vanadiumbaseret elektrode. 04) Det tredje bogstav: angiver batteriets form. R-repræsenterer cylindrisk batteri; L-repræsenterer firkantet batteri. 05) Tal: Cylindrisk batteri: 5 tal angiver henholdsvis diameteren og højden af ​​stormen. Diameterenheden er en millimeter, og størrelsen er en tiendedel af en millimeter. Når en diameter eller højde er større end eller lig med 100 mm, skal den tilføje en diagonal linje mellem de to størrelser. Firkantet batteri: 6 tal angiver stormens tykkelse, bredde og højde i millimeter. Når en af ​​de tre dimensioner er større end eller lig med 100 mm, skal der tilføjes en skråstreg mellem dimensionerne; hvis nogen af ​​de tre dimensioner er mindre end 1 mm, tilføjes bogstavet "t" foran denne dimension, og enheden for denne dimension er en tiendedel af en millimeter. For eksempel repræsenterer ICR18650 et cylindrisk sekundært lithium-ion-batteri; katodematerialet er kobolt, dets diameter er omkring 18 mm, og dets højde er omkring 65 mm. ICR20/1050. ICP083448 repræsenterer et kvadratisk sekundært lithium-ion-batteri; katodematerialet er kobolt, dets tykkelse er omkring 8 mm, bredden er omkring 34 mm, og højden er omkring 48 mm. ICP08/34/150 repræsenterer et kvadratisk sekundært lithium-ion-batteri; katodematerialet er kobolt, dets tykkelse er omkring 8 mm, bredden er omkring 34 mm, og højden er omkring 150 mm.

  • Q.

    Hvad er emballagematerialerne til batteriet?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Hvad er formålet med batteripakning, montering og design?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Hvad er hovedaspekterne af det sekundære batteris ydeevne generelt?

    A.

    Det omfatter hovedsageligt spænding, intern modstand, kapacitet, energitæthed, internt tryk, selvafladningshastighed, cykluslevetid, tætningsydelse, sikkerhedsydelse, lagerydelse, udseende osv. Der er også overopladning, overafladning og korrosionsbestandighed.

  • Q.

    Hvad er pålidelighedstesten af ​​batteriet?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Hvad er batterisikkerhedstesten?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Hvad er standardopladningsmetoderne?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Hvad er standard op- og afladning af Ni-MH-batterier?

    A.

    Den internationale IEC-standard foreskriver, at standardopladning og -afladning af nikkel-metalhydrid-batterier er: Aflad først batteriet ved 0.2C til 1.0V/styk, oplad derefter ved 0.1C i 16 timer, lad det stå i 1 time, og sæt det i ved 0.2C til 1.0V/styk, det vil sige at oplade og aflade batteristandarden.

  • Q.

    Hvad er pulsopladning? Hvad er indvirkningen på batteriets ydeevne?

    A.

    Pulsopladning bruger generelt opladning og afladning, indstillet i 5 sekunder og derefter frigivet i 1 sekund. Det vil reducere det meste af den ilt, der genereres under opladningsprocessen, til elektrolytter under udladningsimpulsen. Det begrænser ikke kun mængden af ​​intern elektrolytfordampning, men de gamle batterier, der er blevet kraftigt polariserede, vil gradvist genoprette eller nærme sig den oprindelige kapacitet efter 5-10 ganges opladning og afladning ved hjælp af denne opladningsmetode.

  • Q.

    Hvad er vedligeholdelsesopladning?

    A.

    Vedligeholdelsesopladning bruges til at kompensere for kapacitetstabet forårsaget af batteriets selvafladning, efter at det er fuldt opladet. Generelt bruges pulsstrømopladning til at opnå ovenstående formål.

  • Q.

    Hvad er opladningseffektivitet?

    A.

    Opladningseffektivitet refererer til et mål for, i hvilken grad den elektriske energi, der forbruges af batteriet under opladningsprocessen, omdannes til den kemiske energi, som batteriet kan lagre. Det er hovedsageligt påvirket af batteriteknologien og stormens arbejdsmiljøtemperatur - generelt, jo højere omgivelsestemperaturen er, jo lavere er opladningseffektiviteten.

  • Q.

    Hvad er udledningseffektivitet?

    A.

    Afladningseffektivitet refererer til den faktiske effekt, der aflades til terminalspændingen under visse afladningsforhold til den nominelle kapacitet. Det er hovedsageligt påvirket af udledningshastigheden, omgivende temperatur, intern modstand og andre faktorer. Generelt gælder det, at jo højere udledningshastigheden er, jo højere udledningshastigheden. Jo lavere udledningseffektivitet. Jo lavere temperatur, jo lavere udledningseffektivitet.

  • Q.

    Hvad er udgangseffekten af ​​batteriet?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Hvad er det sekundære batteris selvafladning? Hvad er selvafladningshastigheden for forskellige typer batterier?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Hvad er en 24-timers selvafladningstest?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Hvad er forskellen mellem den indre modstand i den ladede tilstand og den indre modstand i den afladede tilstand?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Hvad er statisk modstand? Hvad er dynamisk modstand?

    A.

    Den statiske indre modstand er batteriets indre modstand under afladning, og den dynamiske indre modstand er batteriets indre modstand under opladning.

  • Q.

    Er standard overladningsmodstandstest?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Hvad er IEC-standardcykluslevetidstesten?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Hvad er batteriets indre tryk?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Hvad er standardtesten for tilbageholdelse af ladninger?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Hvad er en kortslutningstest?

    A.

    Brug en ledning med intern modstand ≤100mΩ til at forbinde et fuldt opladet batteris positive og negative poler i en eksplosionssikker boks for at kortslutte de positive og negative poler. Batteriet må ikke eksplodere eller gå i brand.

  • Q.

    Hvad er testene for høj temperatur og høj luftfugtighed?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Hvad er et eksperiment med temperaturstigning?

    A.

    Når batteriet er fuldt opladet, sættes det i ovnen og opvarmes fra stuetemperatur med en hastighed på 5°C/min. Når batteriet er fuldt opladet, sættes det i ovnen og opvarmes fra stuetemperatur med en hastighed på 5°C/min. Når ovntemperaturen når 130°C, opbevares den i 30 minutter. Batteriet må ikke eksplodere eller gå i brand. Når ovntemperaturen når 130°C, opbevares den i 30 minutter. Batteriet må ikke eksplodere eller gå i brand.

  • Q.

    Hvad er et temperaturcykluseksperiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Hvad er en faldtest?

    A.

    Efter at batteriet eller batteripakken er fuldt opladet, tabes det fra en højde af 1 m til beton- (eller cement-) jorden tre gange for at opnå stød i tilfældige retninger.

  • Q.

    Hvad er et vibrationseksperiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Hvad er en effekttest?

    A.

    Når batteriet er fuldt opladet, skal du placere en hård stang vandret og slippe en 20-punds genstand fra en vis højde på den hårde stang. Batteriet må ikke eksplodere eller gå i brand.

  • Q.

    Hvad er et penetrationseksperiment?

    A.

    Når batteriet er fuldt opladet, skal du føre et søm med en bestemt diameter gennem stormens centrum og lade stiften blive i batteriet. Batteriet må ikke eksplodere eller gå i brand.

  • Q.

    Hvad er et brandeksperiment?

    A.

    Placer det fuldt opladede batteri på en varmeenhed med et unikt beskyttelsesdæksel til brand, og der vil ikke passere snavs gennem beskyttelsesdækslet.

  • Q.

    Hvilke certificeringer har virksomhedens produkter bestået?

    A.

    Det har bestået ISO9001:2000 kvalitetssystemcertificering og ISO14001:2004 miljøbeskyttelsessystemcertificering; produktet har opnået EU CE-certificering og Nordamerika UL-certificering, bestået SGS-miljøbeskyttelsestesten og har opnået patentlicens for Ovonic; samtidig har PICC godkendt virksomhedens produkter i verden Scope underwriting.

  • Q.

    Hvad er et klar-til-brug-batteri?

    A.

    Klar-til-brug-batteriet er en ny type Ni-MH-batteri med en høj ladningsfastholdelseshastighed, lanceret af virksomheden. Det er et lagringsbestandigt batteri med dobbelt ydelse af et primært og sekundært batteri og kan erstatte det primære batteri. Det vil sige, at batteriet kan genbruges og har en højere resterende effekt efter opbevaring i samme tid som almindelige sekundære Ni-MH-batterier.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Hvad er forholdsreglerne ved brug af batteriet?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Hvad er forskellen mellem forskellige standard genopladelige batterier?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Hvad er afladningshastigheden af ​​batteriet? Hvad er timesatsen for udløsning af stormen?

    A.

    Hastighedsafladning refererer til hastighedsforholdet mellem afladningsstrømmen (A) og den nominelle kapacitet (A•h) under forbrænding. Timeprisafladning refererer til de timer, der kræves for at aflade den nominelle kapacitet ved en bestemt udgangsstrøm.

  • Q.

    Hvorfor er det nødvendigt at holde batteriet varmt, når du optager om vinteren?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Hvad er driftstemperaturområdet for lithium-ion-batterier?

    A.

    Opladning -10—45 ℃ Afladning -30—55 ℃

  • Q.

    Kan batterier med forskellig kapacitet kombineres?

    A.

    Hvis du blander nye og gamle batterier med forskellig kapacitet eller bruger dem sammen, kan der være lækage, nulspænding osv. Det skyldes forskellen i effekt under opladningsprocessen, som gør, at nogle batterier bliver overopladet under opladning. Nogle batterier er ikke fuldt opladede og har kapacitet under afladning. Det høje batteri er ikke helt afladet, og batteriet med lav kapacitet er overafladet. I sådan en ond cirkel er batteriet beskadiget og lækker eller har en lav (nul) spænding.

  • Q.

    Hvad er en ekstern kortslutning, og hvilken indflydelse har det på batteriets ydeevne?

    A.

    Tilslutning af de to ydre ender af batteriet til en hvilken som helst leder vil forårsage en ekstern kortslutning. Det korte forløb kan medføre alvorlige konsekvenser for forskellige batterityper, såsom temperaturstigninger i elektrolyt, stigninger i det indre lufttryk osv. Hvis lufttrykket overstiger batteridækslets modstandsspænding, vil batteriet lække. Denne situation beskadiger batteriet alvorligt. Hvis sikkerhedsventilen svigter, kan det endda forårsage en eksplosion. Derfor må du ikke kortslutte batteriet eksternt.

  • Q.

    Hvad er de vigtigste faktorer, der påvirker batteriets levetid?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Kan batteriet opbevares i apparatet, når det er brugt op, eller hvis det ikke har været brugt i længere tid?

    A.

    Hvis det ikke skal bruge det elektriske apparat i en længere periode, er det bedst at fjerne batteriet og anbringe det på et tørt sted med lav temperatur. Hvis ikke, selvom det elektriske apparat er slukket, vil systemet stadig få batteriet til at have en lav strømudgang, hvilket vil forkorte stormens levetid.

  • Q.

    Hvad er de bedre betingelser for batteriopbevaring? Skal jeg oplade batteriet fuldt ud til langtidsopbevaring?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Hvad er et standardbatteri?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Hvad er de mulige årsager til nul spænding eller lav spænding af det enkelte batteri?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Hvad er de mulige årsager til nul spænding eller lav spænding på batteripakken?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Hvad er kontrolmetoderne for at forhindre overopladning af batteriet?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Hvad er de mulige årsager til, at batteriet eller batteripakken ikke kan oplades?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Fandt du ikke det, du søgte?Kontakt os

tæt_hvid
tæt

Skriv forespørgsel her

svar inden for 6 timer, alle spørgsmål er velkomne!